Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
J Appl Genet ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639843

ABSTRACT

Aberrant mRNA expression is implicated in uterine corpus endometrial carcinoma (UCEC) oncogenesis and progression. However, effective prognostic biomarkers for UCEC remain limited. We aimed to construct a reliable multi-gene risk model using gene expression profiles. Utilizing TCGA data (543 UCEC samples, 35 controls), we identified 1517 differentially acting genes. Weighted gene co-expression complex analysis (WGCCA), hub gene screening, and risk regression analysis (RRA) were employed to determine prognosis-related genes and construct the risk model. Nomograms visualized risk scores and receiver operator characteristic (ROC) curves assessed model performance. Seven novel prognosis-related hub genes (ANGPT1, ASB2, GAL, GDF7, ONECUT2, SV2B, TRPC6) were identified. The model's concordance index (C index) by multivariate Cox regression analysis was 0.79. ROC curves yielded AUCs of 0.811 (3-year) and 0.79 (5-year), demonstrating the model's efficacy in predicting UCEC survival. Our study proposes a promising seven-biomarker risk model for predicting UCEC prognosis, offering potential clinical utility.

2.
Clin Lab ; 70(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38623663

ABSTRACT

BACKGROUND: This study aimed to assess the performance of the newborn screening laboratories in China through retrospective analysis of the coefficient of variation (CV) of the internal quality control (IQC) data in the national tandem mass spectrometry screening for inherited metabolic disorders in newborns. METHODS: From 2015 to 2021, the IQC data of amino acid and acylcarnitine test were collected twice each year. CVmonthly in-control was calculated by excluding outliers for the current month and its discrete distribution and changes in trend were comprehensively evaluated for both normal and high concentration levels. The proportion of laboratories meeting both 1/3 and 1/4 quality criteria of the total error allowable (TEa), based on the CVmonthly in-control for each testing item, was calculated. RESULTS: The analysis of CVmonthly in-control for the two concentration levels for the amino acids and acylcarnitine parameters showed that CVmonthly in-control for the normal concentration levels were more discrete before 2018, while CVmonthly in-control for the high concentration levels were less discrete than the normal concentration levels, but there were relatively more outliers. More than 80% of laboratories were able to meet the 1/3 TEa standard for each test at the high concentration level, while the pass rate for the 1/4 TEa standard was significantly lower than 80% (except for C2). CONCLUSIONS: According to the current status of testing in China, it is recommended to use 1/3TEa as the imprecision level standard; for laboratories with relatively high precision, the 1/4TEa standard can be used.


Subject(s)
Carnitine/analogs & derivatives , Neonatal Screening , Tandem Mass Spectrometry , Infant, Newborn , Humans , Retrospective Studies , Quality Control , China
3.
Water Res ; 256: 121562, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38604064

ABSTRACT

Halophenylacetamides (HPAcAms) have been identified as a new group of nitrogenous aromatic disinfection byproducts (DBPs) in drinking water, but the toxicity mechanisms associated with HPAcAms remain almost completely unknown. In this work, the cytotoxicity of HPAcAms in human hepatoma (HepG2) cells was evaluated, intracellular oxidative stress/damage levels were analyzed, their binding interactions with antioxidative enzyme were explored, and a quantitative structure-activity relationship (QSAR) model was established. Results indicated that the EC50 values of HPAcAms ranged from 2353 µM to 9780 µM, and the isomeric structure as well as the type and number of halogen substitutions could obviously induce the change in the cytotoxicity of HPAcAms. Upon exposure to 2-(3,4-dichlorophenyl)acetamide (3,4-DCPAcAm), various important biomarkers linked to oxidative stress and damage, such as reactive oxygen species, 8­hydroxy-2-deoxyguanosine, and cell apoptosis, exhibited a significant increase in a dose-dependent manner. Moreover, 3,4-DCPAcAm could directly bind with Cu/Zn-superoxide dismutase and induce the alterations in the structure and activity, and the formation of complexes was predominantly influenced by the van der Waals force and hydrogen bonding. The QSAR model supported that the nucleophilic reactivity as well as the molecular compactness might be highly important in their cytotoxicity mechanisms in HepG2 cells, and 2-(2,4-dibromophenyl)acetamide and 2-(3,4-dibromophenyl)acetamide deserved particular attention in future studies due to the relatively higher predicted cytotoxicity. This study provided the first comprehensive investigation on the cytotoxicity mechanisms of HPAcAm DBPs.


Subject(s)
Disinfection , Drinking Water , Drinking Water/chemistry , Humans , Hep G2 Cells , Quantitative Structure-Activity Relationship , Acetamides/toxicity , Acetamides/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Oxidative Stress/drug effects , Disinfectants/toxicity , Disinfectants/chemistry , Reactive Oxygen Species/metabolism
4.
BMC Pediatr ; 24(1): 65, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245686

ABSTRACT

AIMS: To thoroughly evaluate the quality of the entire process of neonatal screening (NBS) in China. METHODS: We collected survey questionnaires from 54.4% (135/248) of NBS institutions in China and conducted on-site visits to 20 of these facilities to validate the data. The quality performance of the institutions was evaluated, and differences across various factors were analysed. RESULTS: Merely 62.5% of the provinces had acceptable performance in neonatal screening. Institutions with limited staff were more prone to organizational management shortcomings. Institutions in provinces with a per capita GDP below 10,000 USD exhibited lower quality control levels than those with a per capita GDP between 10,000 and 15,000 USD. Obstetrics departments have a lower awareness of quality control compared to other blood collection facilities. CONCLUSIONS: A nationwide, comprehensive quality control system for continuous enhancements in quality management, screening, diagnosis, and treatment is imperative to ensure prompt diagnosis and intervention.


Subject(s)
Neonatal Screening , Infant, Newborn , Pregnancy , Female , Humans , Surveys and Questionnaires , China
5.
J Hazard Mater ; 465: 133495, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38232549

ABSTRACT

Currently, the binding of iron-binding protein transferrin (TF) with NPs and their interaction mechanisms have not been completely elucidated yet. Here, we probed the conformation-dependent release of Fe ions from TF induced by nano-sized polystyrene plastics (PS-NPs) using dialysis, ICP-MS, multi-spectroscopic techniques, and computational simulation. The results showed that the release of free Fe ions from TF was activated after PS-NPs binding, which displayed a clear dose-effect correlation. PS-NPs binding can induce the unfolding and loosening of polypeptide chain and backbone of TF. Alongside this we found that the TF secondary structure was destroyed, thereby causing TF protein misfolding and denaturation. In parallel, PS-NPs interacted with the chromophores, resulting in the occurrence of fluorescence sensitization effects and the disruption of the surrounding micro-environment of aromatic amino acids. Also, the binding of PS-NPs induced the formation of new aggregates in the PS-NPs-TF system. Further simulations indicated that PS-NPs exhibited a preference for binding to the hinge region that connects the C-lobe and N-lobe, which is responsible for the Fe ions release and structural alterations of TF. This finding provides a new understanding about the regulation of the release of Fe ions of iron-loaded TF through NPs-induced conformational and structural changes.


Subject(s)
Plastics , Polystyrenes , Polystyrenes/metabolism , Plastics/metabolism , Iron/chemistry , Transferrin/metabolism , Protein Conformation
6.
Sci Total Environ ; 915: 170036, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38242479

ABSTRACT

Plastic fragments are widely distributed in different environmental media and has recently drawn special attention due to its difficulty in degradation and serious health and environmental problems. Among, nanoplastics (NPs) are smaller in size, larger in surface/volume ratio, and more likely to easily adsorb ambient pollutants than macro plastic particles. Moreover, NPs can be easily absorbed by wide variety of organisms and accumulate in multiple tissues/organs and cells, thus posing a more serious threat to living organisms. Alpha-amylase (α-amylase) is a hydrolase, which can be derived from various sources such as animals, plants, and microorganisms. Currently, no studies have concentrated on the binding of NPs with α-amylase and their interaction mechanisms by employing a multidimensional strategy. Hence, we explored the interaction mechanisms of polystyrene nanoplastics (PS-NPs) with α-amylase by means of multispectral analysis, in vitro enzymatic activity analysis, and molecular simulation techniques under in vitro conditions. The findings showed that PS-NPs had the capability to bind with the intrinsic fluorescence chromophores, leading to fluorescence changes of these specific amino acids. This interaction also caused the alterations in the micro-environment of the fluorophore residues mainly tryptophan (TRP) and tyrosine (TYR) residues of α-amylase. PS-NPs interaction promoted the unfolding and partial expansion of polypeptide chains and the loosening of protein skeletons, and destroyed the secondary structure (increased random coil contents and decreased α-helical contents) of this protein, forming a larger particle size of the PS-NPs-α-amylase complex. Moreover, the enzymatic activity of α-amylase in vitro was found to be inhibited in a concentration dependent manner, thereby impairing its physiological functions. Further molecular simulation found that PS-NPs had a higher tendency to bind to the active site of α-amylase, which is the cause for its structural and functional changes. Additionally, the hydrophobic force played a major role in mediating the binding interactions between PS-NPs and α-amylase. Taken together, our study indicated that PS-NPs interaction can initiate the abnormal physiological functions of α-amylase through PS-NPs-induced structural and conformational alternations.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Animals , Polystyrenes/metabolism , Microplastics , alpha-Amylases , Nanoparticles/chemistry , Water Pollutants, Chemical/metabolism
7.
Sci Total Environ ; 912: 168819, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38043826

ABSTRACT

Nanoplastics may adsorb other pollutants in the environment due to their high specific surface area and small size. We used earthworms as experimental organisms to evaluate the ecotoxicity of NPs and Ni combined pollution at the individual and cellular levels. The results showed that when only 20 mg/L Ni2+ was added to the combined pollution system, the antioxidant system of earthworm coelomocytes was destroyed to a certain extent, the ROS level increased, the cell viability decreased significantly, and the redox balance was destroyed. With the introduction of PS-NPs and the increase of concentration, the oxidative damage in the coelomocytes of earthworms gradually increased, and finally tended to be stable when the maximum concentration of 50 mg/L PS-NPs and Ni were exposed together. At the animal level, the activities of CAT and SOD decreased within 28 days of exposure, and the combined pollution showed a synergistic effect. At the same time, it promoted the synthesis of GST in earthworms, improved their detoxification ability and reduced oxidative damage. The changes of T-AOC and MDA showed that the combined pollution caused the accumulation of ROS and caused more serious toxicological effects. With the increase of exposure time, the antioxidant system of earthworms was continuously destroyed, and the oxidative damage was serious, which induced more serious lipid peroxidation and caused the damage of earthworm body wall structure.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Antioxidants/metabolism , Oligochaeta/metabolism , Reactive Oxygen Species , Nickel/toxicity , Polystyrenes , Microplastics , Catalase/metabolism , Superoxide Dismutase/metabolism , Oxidative Stress , Soil Pollutants/toxicity
8.
J Hazard Mater ; 465: 133032, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38000284

ABSTRACT

Nanoplastics (NPs) are currently everywhere and environmental pollution by NPs is a pressing global problem. Nevertheless, until now, few studies have concentrated on the mechanisms and pathways of cytotoxic effects and immune dysfunction of NPs on soil organisms employing a multidimensional strategy. Hence, earthworm immune cells and immunity protein lysozyme (LZM) were selected as specific receptors to uncover the underlying mechanisms of cytotoxicity, genotoxicity, and immunotoxicity resulting from exposure to polystyrene nanoplastics (PS-NPs), and the binding mechanisms of PS-NPs-LZM interaction. Results on cells indicated that when earthworm immune cells were exposed to high-dose PS-NPs, it caused a notable rise in the release of reactive oxygen species (ROS), resulting in oxidative stress. PS-NPs exposure significantly decreased the cell viability of earthworm immune cells, inducing cytotoxicity through ROS-mediated oxidative stress pathway, and oxidative injury effects, including reduced antioxidant defenses, lipid peroxidation, DNA damage, and protein oxidation. Moreover, PS-NPs stress inhibited the intracellular LZM activity in immune cells, resulting in impaired immune function and immunotoxicity by activating the oxidative stress pathway mediated by ROS. The results from molecular studies revealed that PS-NPs binding destroyed the LZM structure and conformation, including secondary structure changes, protein skeleton unfolding/loosening, fluorescence sensitization, microenvironment changes, and particle size changes. Molecular docking suggested that PS-NPs combined with active center of LZM easier and inhibited the protein function more, and formed a hydrophobic interaction with TRP 62, a crucial amino acid residue closely associated with the function and conformation of LZM. This is also responsible for LZM conformational changes and functional inhibition /inactivation. These results of this research offer a fresh outlook on evaluating the detriment of NPs to the immune function of soil organisms using cellular and molecular strategies.


Subject(s)
Nanoparticles , Oligochaeta , Water Pollutants, Chemical , Animals , Plastics , Polystyrenes/toxicity , Microplastics/toxicity , Reactive Oxygen Species/pharmacology , Molecular Docking Simulation , Water Pollutants, Chemical/chemistry , Soil , Nanoparticles/chemistry
9.
Sci Total Environ ; 912: 169359, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38103599

ABSTRACT

Elevated levels of iodide occur in raw water in certain regions, where iodination disinfection byproducts are formed during chloramine-assisted disinfection of naturally iodide-containing water. Iodoacetic acid (IAA) is one of the typical harmful products. The mechanisms underlying IAA-induced immunotoxicity and its direct effects on biomolecules remained unclear in the past. Cellular, biochemical, and molecular methods were used to investigate the mechanism of IAA-induced immunotoxicity and its binding to lysozyme. In the presence of IAA, the cell viability of coelomocytes was significantly reduced to 70.8 %, as was the intracellular lysozyme activity. Upon binding to IAA, lysozyme underwent structural and conformational changes, causing elongation and unfolding of the protein due to loosening of the backbone and polypeptide chains. IAA effectively quenched the fluorescence of lysozyme and induced a reduction in particle sizes. Molecular docking revealed that the catalytic residue, Glu 35, which is crucial for lysozyme activity, resided within the docking range, suggesting the preferential binding of IAA to the active site of lysozyme. Moreover, electrostatic interaction emerged as the primary driving force behind the interaction between IAA and lysozyme. In conclusion, the structural and conformational changes induced by IAA in lysozyme resulted in impaired immune protein function in coelomocytes, leading to cellular dysfunction.


Subject(s)
Iodides , Muramidase , Iodoacetic Acid/toxicity , Iodoacetic Acid/chemistry , Iodoacetic Acid/metabolism , Molecular Docking Simulation , Water
10.
Sci Total Environ ; 905: 167264, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37741403

ABSTRACT

Heavy metal pollution of soils and the widespread use of plastics have caused environmental problems worldwide. Nanoplastics (NPs) contaminants in water and soil environments can adsorb heavy metals, thereby affecting the bioavailability and toxicity of heavy metals. In this paper, the effect of co-exposure of polystyrene microspheres with 100 nm particle size and lead acetate (Pb) on the Eisenia fetida coelomocytes was investigated. The environmental concentration of NPs used was 0.01 mg/L and the concentration of Pb ranged from 0.01 to 1 mg/L, and the exposed cells were incubated at 298 k for 24 h. Our study demonstrated that exposure of cells to environmental relevant concentrations of NPs did not significantly affect the cytotoxicity of Pb exposure. It was shown that co-exposure induced cellular production of reactive oxygen species (ROS, increased to 134.4 %) disrupted the antioxidant system of earthworm body cavity cells, activated superoxide dismutase and catalase (CAT), produced reduced glutathione, and inhibited glutathione-dependent enzyme (GST) activity (Reduced to 64 %). Total antioxidant capacity (T-AOC) is first enhanced against ROS due to the stress of NPs and Pb. When the antioxidant reserves of cells are exhausted, the antioxidant capacity will decrease. The level of malondialdehyde, a biomarker of eventual lipid peroxidation, increased to 231.7 %. At the molecular level, due to co-exposure to NPs and Pb, CAT was loosely structured and the secondary structure is misfolded, which was responsible for exacerbating oxidative damage in E. fetida coelomocytes. The findings of this study have significant implications for the toxicological interaction and future risk assessment of co-contamination of NPs and Pb in the environment.


Subject(s)
Metals, Heavy , Oligochaeta , Soil Pollutants , Animals , Antioxidants/metabolism , Reactive Oxygen Species , Oligochaeta/physiology , Polystyrenes/toxicity , Lead/toxicity , Microplastics/toxicity , Catalase/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Soil Pollutants/analysis , Soil/chemistry
11.
Sci Total Environ ; 904: 166903, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37683861

ABSTRACT

Phenanthrene is frequently detected and exists extensively in the soil environment, and its residues inevitably impose a significant threat to soil organisms. Exposure to and toxicity of phenanthrene on earthworms has been extensively studied before, however, the possible mechanisms and related pathways associated with phenanthrene-triggered toxicity at the intestinal cell level remain unclear. Herein, primary intestinal cells isolated from Eisenia fetida (Annelida, Oligochaeta) intestine were used as targeted receptors to probe the molecular mechanisms involved in ROS-mediated damaging effects and the potential pathways of phenanthrene-induced toxicity at cellular and sub-cellular levels. Results indicated that phenanthrene exposure induced oxidative stress by activating intracellular ROS (elevated O2-, H2O2, and OH- content) bursts in E. fetida intestinal cells, causing various oxidative damage effects, including lipid peroxidation (increased MDA content), protein oxidation (enhanced PCO levels), and DNA damage (enhanced 8-OHdG levels). The enzymatic and non-enzymatic strategies in earthworm cells were activated to mitigate these detrimental effects by regulating ROS-mediated pathways involving defense regulation. Also, phenanthrene stress destroyed the cell membrane of E. fetida intestinal cells, resulting in cellular calcium homeostasis disruption and cellular energetic alteration, ultimately causing cytotoxicity and cell apoptosis/death. More importantly, the mitochondrial dysfunction in E. fetida cells was induced by phenanthrene-caused mitochondrial membrane depolarization, which in turn caused un-controlled ROS burst and induced apoptosis through mitochondria-mediated caspase-3 activation and ROS-mediated mitochondrial-dependent pathway. Furthermore, exposure to phenanthrene activated an abnormal mRNA expression profile associated with defense regulation (e.g., Hsp70, MT, CRT, SOD, CAT, and GST genes) in E. fetida intestinal cells, resulting in various cellular dysfunctions and pathological conditions, eventually, apoptotic cell death. Taken together, this study offers valuable insights for probing the toxic effects and underlying mechanisms posed by phenanthrene at the intestinal cell level, and is of great significance to estimate the detrimental side effects of phenanthrene on soil ecological health.


Subject(s)
Oligochaeta , Phenanthrenes , Soil Pollutants , Animals , Oligochaeta/physiology , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Phenanthrenes/toxicity , Phenanthrenes/metabolism , Oxidative Stress , Soil , Soil Pollutants/metabolism , Superoxide Dismutase/metabolism , Catalase/metabolism , Malondialdehyde/metabolism
12.
Chemosphere ; 335: 139139, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37285977

ABSTRACT

Pyridine and its derivatives are widely used in many applications and inevitably cause extreme scenarios of serious soil contamination, which pose a threat to soil organisms. Still, the eco-toxicological effects and underlying mechanisms of pyridine-caused toxicity toward soil fauna have not been well established. Thus, earthworms (Eisenia fetida), coelomocytes, and oxidative stress-related proteins were selected as targeted receptors to probe the ecotoxicity mechanism of extreme pyridine soil exposure targeted to earthworms by using a combination of in vivo animal experiments, cell-based in vitro tests, in vitro functional and conformational analyses, and in silico analyses. The results showed that pyridine caused severe toxicity to E. fetida at extreme environmental concentrations. Exposure of pyridine induced excessive ROS formation in earthworms, causing oxidative stress and various deleterious effects, including lipid damage, DNA injury, histopathological change, and decreased defense capacity. Also, pyridine destroyed the cell membrane of earthworm coelomic cells and triggered a significant cytotoxicity. Importantly, the intracellular ROS (e.g., O2-, H2O2, and OH·-) was release-activated, which eventually inducing oxidative stress effects (lipid peroxidation, inhibited defense capacity, and genotoxicity) through the ROS-mediated mitochondrial pathway. Moreover, the antioxidant defence mechanisms in coelomocytes responded quickly to reduce ROS-mediated oxidative injury. It was conformed that the abnormal expression of targeted genes associated with oxidative stress in coelomic cells was activated after pyridine exposure. Particularly, we found that the normal conformation (particle sizes, intrinsic fluorescence, and polypeptide backbone structure) of CAT/SOD was destroyed by the direct binding of pyridine. Furthermore, pyridine bound easily to the active center of CAT, but preferentially to the junction cavity of two subunits of SOD, which is considered to be a reason for impaired protein function in cells and in vitro. Based on these evidences, the ecotoxicity mechanisms of pyridine toward soil fauna are elucidated based on multi-level evaluation.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Catalase/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Superoxide Dismutase/metabolism , Soil Pollutants/analysis , Oxidative Stress , Soil/chemistry , Pyridines/analysis , Malondialdehyde/metabolism
13.
J Hazard Mater ; 450: 131072, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36857826

ABSTRACT

In this study, earthworm (Eisenia fetida) brain was chosen as targeted receptors to probe the mechanisms of oxidative stress-related neurotoxicity, genotoxicity, and behavioral disturbances triggered by PHE. Results showed that PHE stress can initiate significant amounts of ROS, thus triggering oxidative stress in E. fetida brain. These effects were accompanied by a significant increase of damage to macromolecules DNA and lipids, resulting in severe oxidative effects. PHE exposure can induce AChE inhibition by ROS-induced injury and the accumulation of excess ACh at the nicotinic post-synaptic membrane, thus inducing aggravated neurological dysfunction and neurotoxicity of E. fetida through an oxidative stress pathway. Moreover, the burrowing behavior of earthworms was disturbed by oxidative stress-induced neurotoxicity after exposure to PHE. Furthermore, the abnormal mRNA expression profiles of oxidative stress- and neurotoxicity-related genes in worm brain were induced by PHE stress. The IBR results suggested that E. fetida brain was suffered more serious damage caused by PHE under higher doses and long-term exposure. Taken together, PHE exposure can trigger oxidative stress-mediated neurotoxicity and genotoxicity in worm brain and behavioral disorder through ROS-induced damage. This study is of great significance to evaluate the harmful effects of PHE and its mechanisms on soil ecological health.


Subject(s)
Oligochaeta , Phenanthrenes , Soil Pollutants , Animals , Oligochaeta/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Brain/metabolism , Phenanthrenes/metabolism , Soil Pollutants/metabolism , Soil , Superoxide Dismutase/metabolism
15.
Sci Total Environ ; 877: 162854, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36931517

ABSTRACT

Nanoplastics (NPs) are widely distributed in various environments, including soil, and have been known to adversely affect soil organisms. Currently, most of the obtained studies were principally focused on the ecological risks of commercial sphere-type microbeads (SNPs), while ignoring that they might be different from randomly-shaped nanoplastics (RNPs) in a real environment. Thus, this study was undertaken to probe the shape-dependent effects of NPs on the earthworm Eisenia fetida and the corresponding poisoning mechanisms, and discriminate the toxicity differences between SNPs and RNPs at the molecule, cell, tissue, and animal levels. The results showed SNPs and RNPs exhibited lethal effects to earthworms with the LC50 determined to be 27.42 g/kg and 21.69 g/kg, respectively after a 28-day exposure. SNPs and RNPs exposure can cause ROS-induced ROS release in worm, inducing oxidative stress through mitochondria-mediated pathway, leading to lipid peroxidation, DNA damage, and histopathological changes, thereby contributing to decreased stress resistance against exogenous stressors. To reduce ROS-mediated oxidative damage, the antioxidant defense system in E. fetida can be activated, which scavenges unwanted ROS. High doses of SNPs and RNPs inhibited the AChE activity in worms, causing excess acetylcholine accumulation in the synaptic space, which finally lead to neurotoxicity. Also, two kinds of NPs can induce the abnormal expression of genes relevant to oxidative stress, reproduction, growth, and tight junction protein in E. fetida, which ultimately contribute to various detrimental effects, tissue damage and dysfunction, reproductive and developmental toxicity. The results obtained from the Integrated Biological Response (IBR) suggested that long-term exposure to high-dose SNPs and RNPs can induce the stronger toxicity effects to E. fetida worms, and RNPs-induced toxicity can be different and stronger than that of SNPs. Our results provide insights for revealing the environmental effects posed by randomly-shaped NPs-contaminated soil, and are of importance for assessing the contribution of NPs with different physical characteristics to soil eco-safety.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Oligochaeta/physiology , Polystyrenes , Microplastics , Reactive Oxygen Species , Soil Pollutants/analysis , Oxidative Stress , Soil
16.
Toxics ; 11(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36851011

ABSTRACT

Indene (IND) is a kind of important aromatic hydrocarbon that is extracted from coal tar and has important applications in industry and biology. In the process of production and utilization, it is easy to enter the soil and produce toxic effects on the soil or organisms. The earthworm is an important organism in the soil. The toxicity of indene on earthworm coelomocytes is rarely studied, and the oxidative stress effects of IND on earthworm coelomocytes remain unclear. In this study, coelomocytes from earthworms and antioxidant enzymes were selected as the research targets. In addition, IND caused oxidative stress, and its related toxic effects and mechanisms were systematically studied and evaluated at the cellular and molecular levels. The results showed that IND destroyed the redox balance in earthworm coelomocytes, and the large accumulation of reactive oxygen species (ROS) significantly inhibited the activities of the antioxidant system, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), and caused lipid peroxidation and membrane permeability changes, resulting in a decrease in cell viability to 74.5% of the control group. At the molecular level, IND was bound to SOD by the arene-H bond, and the binding constant was 4.95 × 103. IND changed the secondary structure of the SOD and led to a loosening of the structure of the SOD peptide chain. Meanwhile, IND caused SOD fluorescence sensitization, and molecular simulation showed that IND was mainly bound to the junction of SOD subunits. We hypothesized that the changes in SOD structure led to the increase in SOD activity. This research can provide a scientific basis for IND toxicity evaluation.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122449, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36753919

ABSTRACT

Quinoline is a common nitrogen heterocyclic aromatic hydrocarbon with high water solubility. Studies have shown that quinoline can be teratogenic, carcinogenic and mutagenic. And Hepatocytes are the target cell of quinoline, which contain a large number of mitochondria and are related to cell function and the balance of reactive oxygen species (ROS). However, the research on the effect of quinoline on hepatocyte damage and anti-oxidation system is still unclear. Through the means of multispectral experiments, it is concluded that quinoline can affect the catalase (CAT) and superoxide dismutase (SOD), change their structure and affect their activity. The binding mode and binding site of quinoline to CAT/SOD were analyzed by isothermal calorimetric titration (ITC) and Molecular Operating Environment (MOE). In molecular docking simulation, the binding site of quinoline-CAT system is close to the active site, and affect the microenvironment of Tyr 357. This may be the reason why quinoline affects CAT activity and synchronous fluorescence (Δλ = 15 nm). This study demonstrated that quinoline has a great effect on CAT, which may affect the intracellular ROS balance and become a potential way to cause hepatocyte damage.


Subject(s)
Quinolines , Superoxide Dismutase , Catalase/metabolism , Reactive Oxygen Species/metabolism , Molecular Docking Simulation , Superoxide Dismutase/metabolism , Quinolines/pharmacology , Oxidative Stress
18.
Sci Total Environ ; 871: 162014, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36740067

ABSTRACT

Fluorene is a commonly identified PAH pollutant in soil and exhibits various worrisome hazardous effects to soil organisms. Currently, the toxicity profiles of fluorene on earthworm brain are rare, and the mechanisms and their corresponding pathways involved in fluorene-triggered neurotoxicity, genotoxicity, and behavior changes have not been reported hitherto. Herein, earthworm (Eisenia fetida) brain was chosen as targeted receptor to explore the neurotoxic effects, genetic toxicity, behavioral disorders, and related mechanisms caused by fluorene-induced oxidative stress pathways. The results showed excess fluorene initiated the release of excessive quantities of ROS in earthworm brain, which have caused oxidative stress and accompanied by serious oxidative effects, including LPO (lipid peroxidation) and DNA injury. To minimize the damage effects, the antioxidant defense mechanisms (antioxidant enzymes and non-enzymatic antioxidants) were activated, and entailed a decrease of the antioxidant capacity in E. fetida brain, which, in turn, causes further ROS-induced ROS release. Exposure of fluorene induced the abnormal mRNA expression of genes relevant to oxidative stress (e.g., GST, SOD, CAT, GPx, MT, and Hsp70) and neurotoxicity (e.g., H02, C04, D06, and E08) in E. fetida brain. Specifically, fluorene can bind directly to AChE, destroying the conformation of this protein, and even affecting its physiological functions. This occurrence caused the inhibition of AChE activity and excess ACh accumulation at the nicotinic post-synaptic membrane, finally triggering neurotoxicity by activation of pathways related to oxidative stress. Moreover, the avoidance responses and burrowing behavior were obviously disturbed by oxidative stress-induced neurotoxicity after exposure to fluorene. The results form IBR suggested more severe poisoning effects to E. fetida brain initiated by high-dose and long-term exposure of fluorene. Among, oxidative stress injury and genotoxic potential are more sensitive endpoint than others. Collectively, fluorene stress can provoke potential neurotoxicity, genotoxicity, and behavioral disturbances targeted to E. fetida brain through the ROS-mediated pathways involving oxidative stress. These findings are of great significance to estimate the detrimental effects of fluorene and the corresponding mechanisms on soil eco-safety.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Antioxidants/metabolism , Oligochaeta/physiology , Reactive Oxygen Species/metabolism , Oxidative Stress , Fluorenes/toxicity , Fluorenes/metabolism , Brain/metabolism , Soil , Soil Pollutants/metabolism , Superoxide Dismutase/metabolism , Catalase/metabolism
19.
Sci Total Environ ; 862: 160770, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36502967

ABSTRACT

As a critical component of atmospheric ultrafine particulates, ultrafine carbon black (UFCB) brings great exposure risk to organisms. At present, the action pathway and activity regulation mechanism of UFCB on functional proteins in vivo are not clear, and the size-dependent effects of UFCB during this process need to be elucidated. Superoxide dismutase (SOD), one of the most applied biomarkers to assess the environmental impact of pollutants, plays crucial roles in resistance to oxidative stress. Here, based on the inactivation of SOD (84.79 %, 86.81 % and 91.70 %) in primary mouse hepatocytes exposed to UFCB (13 nm, 50 nm and 95 nm), oxidative stress, genotoxicity and protein molecular studies were employed to elucidate the inactivation mechanisms. Results showed that inhibition of UFCB-mediated superoxide anion (O2-) contributed to a decrease in SOD activity. Furthermore, the significant increase in 8-hydroxy-2-deoxyguanosine content and the comet tail formation indicated the occurrence of DNA damage, supporting that concomitant aberrant transcriptional and protein translational under gene regulation should be responsible for SOD inactivation. At the molecular level, the constricted backbone, reduced content of α-helix and fluorescence sensitization all demonstrated that the attachment-type binding of SOD on UFCB to form the 'protein corona' disrupted protein structure. Enzyme activity assays indicated that SOD backbone tightening and helix decay resulted in decreased activity, which should be another reason for intracellular SOD inactivation. More importantly, the particle sizes of UFCB exert powerful influences on SOD inactivation mechanisms. Smaller UFCB (13 nm) induced more severe O2- inhibition and DNA damage, while UFCB50nm with the best dispersity bound more SOD and induced stronger molecular toxicity, which are their different strengths in stressing SOD inactivation in hepatocytes. Our findings provide novel insights for exploring functional proteins activity and underscore a potentially size-dependent risk of nanoparticles.


Subject(s)
Protein Corona , Superoxides , Mice , Animals , Soot/toxicity , Superoxide Dismutase , Proteins , DNA Damage
20.
Sci Total Environ ; 854: 158821, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36116645

ABSTRACT

Triclocarban (TCC) is an emerging environmental contaminant, posing potential ecological risks. Displaying a high accumulation effect and 120-day half-life in the soil environment, the toxic effects of TCC to soil organisms have been widely reported. Previous studies have confirmed that TCC can induce the oxidative stress and changes in superoxide dismutase (SOD) and catalase (CAT) activities in earthworms, but the underlying mechanisms of oxidative stress and disorder in antioxidant enzyme activities induced by TCC have not yet been elucidated. Here, we explored the multiple response mechanisms of SOD and CAT under the regulation of oxidative stress induced by TCC. Results indicated that higher-dose (0-2.0 mg/L) TCC exposure triggered the overproduction of ROS in Eisenia foetida coelomocytes, causing oxidative damage and a decrease in cell viability that was response to ROS accumulation. The TCC-induced inhibition of intracellular SOD/CAT activity was found under the regulation of oxidative stress (SOD: 29.2 %; CAT: 18.5 %), and this effect was blunted by antioxidant melatonin. At the same time, the interaction between antioxidative enzymes and TCC driven by various forces (SOD: electrostatic interactions; CAT: van der Waals forces and hydrogen bonding) led to inhibited SOD activity (9.84 %) and enhanced CAT activity (17.5 %). Then, to elucidate the binding mode of TCC, we explored the changes in SOD and CAT structure (protein backbone and secondary structure), the microenvironment of aromatic amino acids, and aggregation behavior through multispectral techniques. Molecular docking results showed that TCC inhibited SOD activity in a substrate competitive manner and enhanced CAT activity by the stabilizing effects of TCC on the heme groups. Collectively, this study reveals the response mechanisms of SOD/CAT under the regulation of TCC-triggered oxidative stress and shed a new light on revealing the toxic pathways of exogenous pollutants on antioxidant-related proteins function.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Catalase/metabolism , Antioxidants/metabolism , Oligochaeta/metabolism , Reactive Oxygen Species/metabolism , Molecular Docking Simulation , Oxidative Stress , Superoxide Dismutase/metabolism , Soil , Soil Pollutants/toxicity , Malondialdehyde/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...